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Abstract

In this project, the behavior of stochastic gradient descent (SGD) method for least square
regression problem, including the noise reduction and acceleration, is studied and reviewed. To
apply two theorems of the behavior of SGD with fixed stepsize and diminishing stepsize [1, 4],
I first validate two assumptions for this least square regression problem, such as Lipschitz-
continuous gradient assumption and upper bound assumption of stochastic gradient. And a
numerical experiment is conducted to verify the conclusion of the theorem with fixed stepsize.
Three main approaches to reduce noise in SGD are reviewed, and a following numerical result
shows the effectiveness of iterate averaging method. Then the acceleration of SGD based on a
recent paper [3] is studied. The concepts of condition number and statistical condition number
are introduced, and their values in two examples are illustrated, such as a discrete distribution
and a Gaussian distribution. Then the acceleration performance is numerically studied for a
noise-free case and a noisy case with a preset high condition number.

1 Problem Setup and Introduction to SGD

Following reference [2, 3], least squares regression problem is considered:

arg min
w∈Rd

F (w), F (w) :=
1

2
EP
[
(y − 〈w,x〉)2

]
, (1)

where each sample data (x, y) is drawn from the distribution P over Rd×R, and d is the dimension
of the problem, or the dimension of the feature space. From the statement of the problem, we
can see that the prediction function is assumed to be linear functions with parameter as a real
vector w ∈ Rd, and the loss function is quadratic. More specifically, prediction function class
H : Rd × Rd → R and loss function l : R× R→ R is defined as:

H := {h(·;w) = 〈·,w〉 : w ∈ Rd}, l(h(x;w), y) =
1

2
(y − 〈w,x〉)2, (2)

where 〈w,x〉 denotes to the inner product between vectors w and x. Noted that I adopt the
notation from [4].

The optimal w∗ can be approximated by the empirical risk minimizer (ERM). Given n i.i.d.samples
{xi, yi}ni=1 drawn from distribution P , ERM algorithm is defined as

ŵn := arg min
w∈Rd

Fn(w), Fn(w) :=
1

n

n∑
i=1

l(h(xi;w), yi) =
1

n

n∑
i=1

1

2

[
(yi − 〈w,xi〉)2

]
. (3)
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Then the next task is to develop optimization algorithms for this minimization problem. Quoted
from [4], there are two broad categories of optimization algorithm for this task: stochastic and batch.
The batch gradient descent method is the traditional and well known optimization approach, which
is defined by iteration:

wk+1 ← wk − αk∇Fn(wk) = wk −
αk
n

n∑
i=1

∇li(wk). (4)

Here, li(wk) = l(h(xi;wk), yi) is used for simplicity, and its gradient is

∇li(wk) = −(yi − 〈wk,xi〉) xi = (〈wk,xi〉 − yi) xi. (5)

On the other hand, the stochastic gradient descent (SGD) method is to pick ik randomly from
{1, 2, . . . } at time step k, and only compute the gradient of one loss function lik(wk). The iteration
sequence is then defined as:

wk+1 ← wk − αk∇lik(wk). (6)

One intuitive motivation for SGD [4] is that at each time step, we only need to compute the gradient
for one sample, which is 1/n times cheaper than the batch method. Another reason is that with
a large amount of training data, normally there is certain level of redundancy involved. Using
all of the sample data to compute iteration steps could be inefficient. Another practical reason is
that in some online or streaming applications, SGD can be performed one sample by one sample,
while batch method (total batch) is not able to achieve this. However, it should be noted that a
mini-batch method is a compromise of these two algorithms.

2 Behaviors of SGD in Least Square Regression

In our course and [4], the behavior of SGD for a strongly convex objective with both fixed and
diminishing stepsize are studied and summarized as two theorems. I copy them here for convenience.

Theorem 1. With Finf = F ∗, if the SGD method is run with a fixed stepsize, αk = ᾱ for all k ∈ N,
satisfying

0 < ᾱ ≤ µ

LMG
. (7)

Then, the expected optimality gap satisfies the following inequality for all k ∈ N:

E [F (wk)− F ∗] ≤
ᾱLM

2cµ
+ (1− ᾱcµ)k−1

(
F (w1)− F ∗ −

ᾱLM

2cµ

)
k→∞−−−→ ᾱLM

2cµ
.

(8)

Theorem 2. With Finf = F ∗, if the SGD method is run with a diminishing stepsize for k ∈ N,
satisfying

αk =
β

γ + k
for some β >

1

cµ
and η > 0 such that α1 ≤

µ

LMG
(9)

Then, the expected optimality gap satisfies the following inequality for all k ∈ N:

E [F (wk)− F ∗] ≤
ν

γ + k
,

k→∞−−−→ 0,

(10)
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where

ν := max

{
β2

2(βcµ− 1)
, (γ + 1)(F (w1)− F ∗)

}
(11)

In order to apply these two theorems, two assumptions needs to be satisfied. We examine them
here for this least square regression problem stated in Section 1, and obtain parameters needed for
these two theorems. First assumption is the Lipschitz-continuous objective gradients, namely the
gradient of objective function ∇F (w) is Lipschitz-continuous with Lipschitz constant L > 0, i.e.,

‖∇F (w1)−∇F (w2)‖ ≤ L ‖w1 −w2‖ for all w1,w2 ∈ Rd. (12)

In the least squares regression problem, we consider the expected loss function for samples and
using Equation (5)

LHS = ‖E [〈w1 −w2,x〉x]‖ =
∥∥E [xxT ] · (w1 −w2)

∥∥ = ‖Cov(x) · (w1 −w2)‖ (13)

where Cov(x) is the covariance matrix of x. Therefore, Lipschitz constant L can be chosen as the
largest eigenvalue of E

[
xxT

]
or Cov(x), and this assumption will be satisfied.

The second assumption is about the variance of stochastic gradient. More specifically, the first
component require objective function F (w) is bounded below by Finf, which is obviously for this
least square regression problem, and Finf = 0. The second and third components of this assumption
need some assumptions for the sample data. Followed from [3], we assume sample data are generated
by

y = 〈w∗,x〉+ ε (14)

where ε is an independent random variable with respect to x. Therefore, for objective function
F (w) and its gradient defined in (1) can be written as

F (w) =
1

2
EP
[
(〈w −w∗,x〉)2

]
+

1

2
E
[
ε2
]
, (15)

∇F (w) = EP [〈w −w∗,x〉x] = Cov(x) · (w −w∗). (16)

Therefore, Finf = F ∗ = 1
2E
[
ε2
]
. Then, for the below relations to be satisfied

∇F (wk)
TEξk [∇lik(wk)] ≥ µ ‖∇F (wk)‖2 and (17)

‖Eξk [∇lik(wk)]‖ ≤ µG ‖∇F (wk)‖ . (18)

where ξk = (xik , yik) is the random training sample. For the streaming problem, relation Eξk [∇lik(wk)] =
∇F (wk) holds. So µ, µG can both be chosen as 1.

The third component of the second assumption reads as, there exist M ≥ 0 and MV ≥ 0 such that,
for all k ∈ N,

Vξk [∇lik(wk)] ≤M +MV ‖∇F (wk)‖2 . (19)

In fact, the left hand side of this relation can be written as

LHS = Vξk [(〈wk −w∗,xk〉 − ε) xk]

= Eξk
[(
〈wk −w∗,xk〉2 + ε2

)
‖xk‖2

]
− ‖Cov(x) · (wk −w∗)‖2

≤ E[ε2]

d∑
i=1

σ2i +MV ‖∇F (wk)‖2
(20)
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Here, MV is related to the fourth moment of xk. Since ‖F (wk)‖ ≥ λmin ‖wk −w∗‖ with λmin being
the smallest eigenvalue of the covariance matrix, a finite, positive MV can always be obtained.

Therefore, the least square regression problem stated satisfies all two assumptions that theorem 1
and 2 are based on. Then, we can perform several numerical experiments with SGD to verify these
two theorems.

I considered a sample space with dimension d = 50, and elements of vector x are all independent
to each other. The value of y is generated by a normal random vector w∗ and a Gaussian random
noise ε as in Equation (14). Therefore, the covariance matrix is diagonal. The covariance along each
axis is randomly chosen to be in the range [0.1, 10]. Different fixed stepsize ᾱ = 0.01, 0.001, 0.0001
are chosen for 105 time steps, the results are shown below.

(a) (b) (c)

Figure 1: The excess error with respect to time steps with different stepsize.

The numerical result in 1 coincides with theorem 1 excellently. First, the remaining error is pro-
portional to the stepsize as shown in the first term of Equation (8), as the stepsize is decreased,
the remaining error also decreases. Second, with a smaller stepsize, the decaying rate is slower. In
logarithm manner, when the second term dominates, we have

logE [F (wk)− F ∗] ≤ (k − 1) log (1− ᾱcµ) + log

(
F (w1)− F ∗ −

ᾱLM

2cµ

)
(21)

When two terms in (8) become comparable, the error starts to drop dramatically.

3 Noise Reduction Method

From theorem 1 and 2, we can see that with a fixed stepsize, the error converges much faster
than the diminishing stepsize algorithm. However, the remaining error for the fixed stepsize case
could be ignorable. There are three main approaches for noise reduction of the SGD [4], such as
dynamic sampling, gradient aggregation, and iterate averaging. They can all be understood within
the framework of two theorems mentioned.

For the dynamic sampling method, the iteration is modified as

wk+1 ← wk − ᾱgk(wk) = wk −
αk
nk

∑
i∈Sk

∇li(wk), with nk := |Sk| = dτk−1e. (22)

Therefore, obviously, the M in (8) is controlled to decrease geometrically, and

V [gk(wk)] ≤
V [∇li(wk)]

nk
≤ M

nk
. (23)
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Therefore, both two terms in (8) are decreasing geometrically. Therefore, with some constant
ω, ρ > 0,

E [F (wk)− F ∗] ≤ ωρk−1 (24)

Different from dynamic sampling, gradient aggregation reuses previously computed information
to reduce noise. For example, the stochastic variance reduced gradient (SVRG) method has each
iteration as

w̃j+1 ← w̃j − αgj(w̃j ,wk) = wk − α {∇lj(w̃j)− [∇lj(wk)−∇Rn(wk)]} , (25)

where ∇Rn is a batch gradient computed with wk. Therefore, the spirit of this method is reuse
the stored batch gradient, and apply the difference of ∇lj and this batch gradient as the noise
generated by random samples.

The last noise reduction method we will examine here is much simpler than previous two, and its
iteration reads as

wk+1 ← wk − αk∇lik(wk), and w̃k+1 ←
1

k + 1

k+1∑
j=1

wj (26)

Noted that although the averaged sequence {w̃k} is the optimal parameter vector we are seeking,
but it does not affect the normal SGD iteration sequence. This method is based on the argument
that with a fixed stepsize, the remaining error is nonzero is because the parameter vector oscillates
around the minimum randomly due to the noisy gradient. And taking an average of these oscillating
parameter vectors can cancel the noise. Since the initial bias error introduced by w1 could be
large, we may prefer taking average after certain number of steps. Trail averaging method can be
developed based on this thought [2]. And the iteration in (26) is modified to be

wk+1 ← wk − αk∇lik(wk),

and w̃k+1 ←
1

k − s+ 1

k+1∑
j=s+1

wj =
1

k − s+ 1
wk+1 +

k − s
k − s+ 1

w̃k.
(27)

(a) (b)

Figure 2: The excess error with respect to time steps with different mini-batch size. Total n = 2×106

sample data are considered. Averaging starts from s = 2× 105.
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A numerical experiment is performed using this trail averaging SGD, and mini-batch is also in-
corporated. The same training sample space considered is the same as in Section 2, and different
mini-batch size is considered. From Figure 2, we can see that before averaging, the error behaves
the same as normal SGD in Figure 1. And a larger batch leads to smaller variance of noise, or M
value, which leads to a smaller remaining error. After averaging starting from s = 2× 105, a kink
curve appears for both figures in Figure 2, and the excess error drops dramatically. It should be
noted that the error will converge to σ2d/n [2], where σ2 denotes the noise level.

4 Acceleration of SGD

It was proposed in [3] that, a SGD algorithm could be accelerated within certain distribution of the
training samples. It has been proved in [2] that the error of an averaged SGD method is converging
with rate

O
(

exp

(
−n
κ
· (F (w1)− F (w∗)

)
+
σ2d

n

)
(28)

And the proposed accelerated SGD (ASGD) could reach a rate as

O∗
(

exp

(
−n√
κκ̃
· (F (w1)− F (w∗)

)
+
σ2d

n

)
(29)

Here, κ, κ̃ are condition number and statistical condition number, which will be introduced below.
Noted that this acceleration method is effective only if κ̃ is much smaller than κ, which is correct
for certain distributions.

We first introduce the second moment matrix H, and it is the same with the Hessian ∇2F (w) in
this least square regression problem.

H := EP
[
xxT

]
= Cov(x) = ∇2F (w) (30)

The noise level is defined as:
σ2 = E

[
ε2
]

(31)

where ε is defined in (14). Define µ as the smallest eigenvalue of H:

µ := λmin(H) (32)

And R2 is the smallest positive number satisfying:

E
[
‖x‖2 xxT

]
� R2H (33)

Then condition number κ is deduced as:

κ :=
R2

µ
(34)

And statistical condition number κ̃ is defined as the smallest positive number s.t.

E
[
‖x‖2H−1 xx

T
]
� κ̃H (35)

where ‖x‖2S = xTSx.
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Relation κ̃ � κ can be deduced since E
[
‖x‖2H−1 xxT

]
� 1

µE
[
‖x‖2 xxT

]
� κH.

Next, I will examine the value of these two condition numbers for two different distributions. First
is a discrete distribution described in [3], the sample vector x can only be unit basis vectors along
each axis with probability pi. Then matrix H can be written as:

H =

p1 . . .

pd

 . (36)

Therefore, µ = mini pi, and since ‖x‖2 = 1, R = 1 is easily deduced. Then,

κ =
1

mini pi
(37)

For the statistical condition number,

E
[
‖x‖2H−1 xx

T
]

=
d∑
i

pi
1

pi
eie

T
i = I (38)

where ei is the unit basis vector along i-th axis, and I is the d × d identity matrix. Therefore, κ̃
also equal to 1/mini pi.

So according to (28) and (29), this acceleration method is not applicable to this discrete distribution.
Next we consider the Gaussian sample data with diagonal covariance matrix, which is just the
second moment matrix H:

Cov(x) =

σ
2
1

. . .

σ2d

 = E
[
xxT

]
= H (39)

Then, µ = mini σ
2
i , and from (33) R2 ≈

∑d
i σ

2
i . Therefore, κ is O(

∑d
i σ

2
i /µ), and it could be very

large. The statistical condition number κ̃ with this distribution can be considered as:

E
[
‖x‖2H−1 xx

T
]

= E

[(
d∑
i

x2i
σ2i

)
xxT

]
≈ dH (40)

Therefore, κ̃ is only comparable to dimension d. So with a considerable large κ, according to (28)
and (29), the SGD can be greatly accelerated by the algorithm proposed in [3].

I also performed numerical study of this accelerated algorithm. I generated the data the same
way as before. But it should be noted that to guarantee a large κ to compare the acceleration
performance, I forced the mini σ

2
i = 0.01, and other variance are randomly chosen from [0.01, 10].

Therefore the κ could be as high as 2× 104 according to what I mentioned earlier. Meanwhile, κ̃ is
only comparable to d = 50. Based on (28) and (29), this algorithm could be 20 times faster than
the normal averaged SGD. We performed the calculation for both with noise and without noise
cases. The numerical results are shown below: A numerical experiment is performed using this trail
averaging SGD, and mini-batch is also incorporated. The same training sample space considered
is the same as in Section 2, and different mini-batch size is considered.
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(a) (b)

Figure 3: The excess error with respect to time steps with noise and without noise. Total n = 2×106

sample data are considered.

Shown in Figure 3, we can see the acceleration did perform much better than the normal averaged
SGD without noise. However, in the noisy case, it is not as expected and some part of the noisy
case is lost due to the noise level is possibly too high. One thing is that the acceleration may not
be as appealing as 20 times as predicted, because the superscript in (29) means that the outside
constant parameter also includes κ, which is different from (28). Another key point is that the κ
has to be set high enough to see the difference. However, another issue is that with certain level
of noise, the element of x with very small variance may not be even seen, which will bring in a
considerable error.
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